Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 33(8): 2003-2010, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28117592

RESUMO

The pyrolysis of a block copolymer thin film, the free surface of which was in contact with air or a capping layer of SiO2, produced four carbon nanostructures. Thin films of a diblock copolymer having perpendicularly oriented lamellar nanodomains served as carbon and nitrogen precursors. Before pyrolysis, the lamellar nanodomains were cross-linked with UV irradiation under nitrogen gas (UVIN). Without a capping layer, pyrolysis caused a structural transformation from lamellar nanodomains to short carbon nanowires or to dropletlike nanocarbons in a row via Rayleigh instability, depending on the duration of pyrolysis. When capped with a layer of SiO2 followed by pyrolysis, the lamellar nanodomains were converted to pod-like, spaghetti-like, or long worm-like carbon nanostructures. These carbon nanostructures were driven by controlling the surface or interface tension and the residual yield of solid carbonaceous species.

2.
Nanoscale Res Lett ; 8(1): 349, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23924368

RESUMO

This study fabricates the optically active uniform SiGe/Si multiple quantum well (MQW) nanorod and nanodot arrays from the Si0.4Ge0.6/Si MQWs using nanosphere lithography (NSL) combined with the reactive ion etching (RIE) process. Compared to the as-grown sample, we observe an obvious blueshift in photoluminescence (PL) spectra for the SiGe/Si MQW nanorod and nanodot arrays, which can be attributed to the transition of PL emission from the upper multiple quantum dot-like SiGe layers to the lower MQWs. A possible mechanism associated with carrier localization is also proposed for the PL enhancement. In addition, the SiGe/Si MQW nanorod arrays are shown to exhibit excellent antireflective characteristics over a wide wavelength range. These results indicate that SiGe/Si MQW nanorod arrays fabricated using NSL combined with RIE would be potentially useful as an optoelectronic material operating in the telecommunication range.

3.
Biosens Bioelectron ; 43: 56-62, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277340

RESUMO

The taste sensing capabilities of a "biomimetic tongue" based on the photoluminescence (PL) responses of metal-organic frameworks (MOFs), [In(OH)(bdc)]n (bdc=1,4-benzenedicarboxylate), [Tb(btc)]n (MOF-76, btc=benzene-1,3,5-tricarboxylate), and [Ca3(btc)2(DMF)2(H2O)2]·3H2O are proven on aqueous solutions of five basic tastants: sucrose (sweet), caffeine (bitter), citric acid (sour), sodium chloride (salty) and monosodium glutamate (umami). For [In(OH)(bdc)]n, the tastant interacts stereochemically with poly(acrylic acid) (PAA) and alters its conformations. The frequency and magnitude of chelation between COO(-) pendant groups of PAA and In(3+) nodes of [In(OH)(bdc)]n framework influence the corresponding PL reponses. For MOF-76, the tastant interacts with incorporated water in MOF-76 through hydrogen bonding. The limitation of O-H bond stretching of water results in the enhancement of the PL intensity. For [Ca3(BTC)2(DMF)2(H2O)2]·3H2O, it is added as a third MOF component to increase the precision on taste discrimination. The significance of MOF-based "biomimetic tongue" includes: (1) PAA on [In(OH)(bdc)]n mimics the taste receptor cells (TRCs) for their structural flexibility, (2) the Weber-Fechner law of human sensing that sensation is proportional to the logarithm of the stimulus intensity is observed between the PL emission response of MOF-76 and the concentration of tastant, (3) the strength of taste is quantified by the τ scale and the PL emission intensity of MOF-76, which are dependent on the logarithmic tastant concentration, (4) the tastant is identified by the shape of the 3D principal component analysis contour map (i.e., pattern recognition method), and (5) the fabrication of [In(OH)(bdc)]n/PAA film by brushing is illustrated.


Assuntos
Biomimética/instrumentação , Técnicas Biossensoriais/instrumentação , Análise de Alimentos/instrumentação , Medições Luminescentes/instrumentação , Paladar , Língua , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
4.
Nanoscale Res Lett ; 7: 119, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22330902

RESUMO

We report here on the first study of the growth kinetics of high-yield, vertical CuO nanowires on silicon substrates produced by the process of thermal oxidation. The length of the CuO nanowires could be tuned from several to tens of micrometers by adjusting the oxidation temperature and time. The grown CuO nanowires were determined to be single-crystalline with different axial crystallographic orientations. After a series of scanning electron microscopy examinations, the average length of CuO nanowires produced at each temperature was found to follow a parabolic relationship with the oxidation time. The parabolic growth rate at different oxidation temperatures was measured. The activation energy for the growth of CuO nanowires calculated from an Arrhenius plot was found to be about 174.2 kJ/mole. In addition, the current-voltage characterization indicated that the sample with high-density CuO nanowires exhibited ohmic behavior, and its resistance was found to significantly decrease with increasing environmental temperature. The result can be attributed to an increase in the number of carriers at higher temperatures.

5.
Nano Lett ; 8(8): 2194-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18616326

RESUMO

The formation of CoSi and CoSi2 in Si nanowires at 700 and 800 degrees C, respectively, by point contact reactions between nanodots of Co and nanowires of Si have been investigated in situ in a ultrahigh vacuum high-resolution transmission electron microscope. The CoSi2 has undergone an axial epitaxial growth in the Si nanowire and a stepwise growth mode was found. We observed that the stepwise growth occurs repeatedly in the form of an atomic step sweeping across the CoSi2/Si interface. It appears that the growth of a new step or a new silicide layer requires an independent event of nucleation. We are able to resolve the nucleation stage and the growth stage of each layer of the epitaxial growth in video images. In the nucleation stage, the incubation period is measured, which is much longer than the period needed to grow the layer across the silicide/Si interface. So the epitaxial growth consists of a repeating nucleation and a rapid stepwise growth across the epitaxial interface. This is a general behavior of epitaxial growth in nanowires. The axial heterostructure of CoSi2/Si/CoSi2 with sharp epitaxial interfaces has been obtained. A discussion of the kinetics of supply limited and source-limited reaction in nanowire case by point contact reaction is given. The heterostructures are promising as high performance transistors based on intrinsic Si nanowires.


Assuntos
Cobalto/química , Nanofios/química , Nanofios/ultraestrutura , Silício/química , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...